REACTION OF PF5.CH3CN WITH SULFIDE

L. KOLDITZ, U. CALOV, YU.A. BUSLAEV AND E. ILYIN

Central Institute of Inorg. Chem. Acad. of Sci., Berlin, GDR; Kurnakov Institute, Acad. of Sci., Moscow, USSR

Nitriles react with PF₅ and also with AsF₅, 3bF₅ forming 1:1-adducts. Using C₂Cl₃F₃ as a solvent is of advantage for this reaction. PF₅·CH₃CN and $[N(C_2H_5)_4]$ SH give $[N(C_2H_5)_4][P_2S_2F_8]$ with a sulfur double bridge and hexafluorophosphate in acetonitrile [1]. In case of AsF₅·CH₃CN a salt with the anion [AsF₅-NH-CS-CH₃]⁻ has been isolated [2]. Following products have been confirmed in a reaction mixture of PF₅·CH₃CN and SH⁻ in acetonitrile by NMR (³¹P and ¹⁹F): [PF₆]⁻, $[F_5P-S-PF_5]^{2-}$, $[F_4P < S > PF_4]^{2-}$, F_4PSH , F_3PS , HPS_2F_2 , $[PS_2F_2]^-$, $[F_5P-N=C(SH)-CH_3]^-$, $[F_5P-NH-CS-CH_3]^-$, $[F_5PSH]^-$. With a ratio PF₅·CH₃CN: SH⁻ = 2:1 the Sbridge-complexes are prefered whereas in case of a ratio 1:1 the non-bridged P-complexes are the main products.

1 L.Kolditz, U.Calov a. Chr.Bechstein, Z.Chem.<u>20</u>, 303 (1980) 2 L.Kolditz a. I.Beierlein, Z.Chem. <u>18</u>, 452 (1978)